Common Dissimilarity Measures are Inappropriate for Time Series Clustering
نویسندگان
چکیده
منابع مشابه
Common Dissimilarity Measures are Inappropriate for Time Series Clustering
Clustering algorithms have been actively used to identify similar time series, providing a better understanding of data. However, common clustering dissimilarity measures disregard time series correlations, yielding poor results. In this paper, we introduce a dissimilarity measure based on series partial autocorrelations. Experiments compare hierarchical clustering algorithms using the common d...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملClustering and a Dissimilarity Measure for Methadone Dosage Time Series
In this work we analyze data for 314 participants of a methadone study over 180 days. Dosages in mg were converted for better interpretability to seven categories in which six categories have an ordinal scale for representing dosages and one category for missing dosages. We develop a dissimilarity measure and cluster the time series using “partitioning around medoids” (PAM). The dissimilarity m...
متن کاملDistance Measures for Effective Clustering of ARIMA Time-Series
Many environmental and socioeconomic time–series data can be adequately modeled using Auto-Regressive Integrated Moving Average (ARIMA) models. We call such time–series ARIMA time–series. We consider the problem of clustering ARIMA time–series. We propose the use of the Linear Predictive Coding (LPC) cepstrum of time–series for clustering ARIMA time–series, by using the Euclidean distance betwe...
متن کاملA tail dependence-based dissimilarity measure for financial time series clustering
In this paper we propose a clustering procedure aimed at grouping time series with an association between extremely low values, measured by the lower tail dependence coefficient. Firstly, we estimate the coefficient using an Archimedean copula function. Then, we propose a dissimilarity measure based on tail dependence coefficients and a two-step procedure to be used with clustering algorithms w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista de Informática Teórica e Aplicada
سال: 2013
ISSN: 2175-2745,0103-4308
DOI: 10.22456/2175-2745.25070